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What can be modeled in gem5? 
Subsystems that can be modeled in gem5 No GPU model! 

Note: gem5 models the subsystems above, not the actual products. 

Simple 
models exist 
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What a real system does 

§  Modern mobile systems contain a GPU 
§  Even watches have GPUs nowadays! 

§  The GPU is obviously used for 3D 
§  … but also used for 2D: 

§  Composition & alpha blending 
§  Rotation & scaling 

§  Driver stack is complex: 
§  Easily 100k+ lines of code 
§  Contains an optimizing compiler 
§  Can contribute to around 10M instructions/

frame for complex workloads 
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What we normally model 

§  Software renderer instead of a real GPU 
§  Optimization friendly code 
§  Can be vectorized 
§  Easy-to-predict branches 
§  Large memory foot print 

§  Workload and software renderer compete 
for resources 

§  Can significantly skew core behavior 

§  Affects 2D applications and 3D 
applications 
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What about simulating the GPU? 

§  Pros: 
§  Golden reference – everything looks like a 

real system! 
§  Captures memory system interactions 
§  Graphics output 

§  Cons: 
§  GPU models add a lot of simulation overhead 
§  Realistic models not available to the research 

community 

§  Solution: Don’t simulate the GPU! 
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Introducing NoMali 

§  Looks like a GPU 
§  Provides the same register interface 
§  Simulates interrupts 

§  Runs the full driver stack 
§  Pretends to run rendering jobs 

§  Doesn’t render anything 
§  Signals job completion immediately 

 
§  Available to the community 

§  … but doesn’t produce any display output 
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Mali GPU overview 
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See AnandTech for a good architecture overview 
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Mali GPU overview:  The Job Manager 

§  Abstracts the underlying µ-architecture 
§  Controls most aspects of the GPU: 

§  Job scheduling 
§  Interupts 
§  Address translation 
§  Caches 
§  … 

§  Job submission through a register interface 
§  Job parameters in main memory: Job 

Descriptor  

§  Interrupt on job completion 
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NoMali overview 
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Comparing simulation strategies 
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§  Three experiments: 
§  Software rendering, NoMali, GPU reference 

§  Experimental setup: 
§  Android 4.4 (KitKat ) 
§  BBench 
§  Identical disk images in all experiments 

§  Software rendering results in useless CPU 
performance 

§  NoMali is within 2% for CPU performance 
§  … and 35% faster! 

73% 103% 135% 54% 
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Model limitation:  GPU bandwidth 
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§  GPU memory system interactions not 
simulated 

§  Could potentially be faked using traffic 
generators 

§  Absolute difference for bbench ~75 MiB/s 
§  Not likely to be a problem for CPU-centric 

studies 

§  Graphics workloads would experience a 
larger impact from the GPU 

§  NoMali was never intended for that use case. 

73% 103% 135% 54% 
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gem5 Issue: inefficient uncacheable memory  

§  Mali Midgard-series GPUs are IO coherent 
§  GPU snoops into CPU caches 
§  CPUs can’t snoop into the GPU’s caches 

§  The driver disables caching for many 
regions used by both the GPU and CPU 

§  Wasn’t handled efficiently by gem5 
§  Uncacheable accesses were always strictly 

ordered 
§  Resulted in CPIs ~50 (should’ve been ~2) 
§  Fix committed in early May 2015 
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§  NoMali Model available on GitHub 
§  https://github.com/ARM-software/nomali-model

§  gem5 integration on Review Board [RB2867, RB2869] 

§  Requires drivers 
§  Will make use of drivers available from MaliDeveloper 
§  Requires a recent Android version (KitKat or LolliPop) 

§  Android KitKat build instructions will be on the Wiki shortly 

gem5 integration plan 
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Questions? 


