
1

NoMali: Understanding the Impact of
Software Rendering Using a Stub GPU

Andreas Sandberg
ARM Research

2

What can be modeled in gem5?
Subsystems that can be modeled in gem5 No GPU model!

Note: gem5 models the subsystems above, not the actual products.

Simple
models exist

3

What a real system does

§  Modern mobile systems contain a GPU
§  Even watches have GPUs nowadays!

§  The GPU is obviously used for 3D
§  … but also used for 2D:

§  Composition & alpha blending
§  Rotation & scaling

§  Driver stack is complex:
§  Easily 100k+ lines of code
§  Contains an optimizing compiler
§  Can contribute to around 10M instructions/

frame for complex workloads

CPU

L1D L1I

LPDDR3

GPU

Android

Workload

CPU

L1D

L2

L1I

Display
Controller

GPU drivers

4

What we normally model

§  Software renderer instead of a real GPU
§  Optimization friendly code
§  Can be vectorized
§  Easy-to-predict branches
§  Large memory foot print

§  Workload and software renderer compete
for resources

§  Can significantly skew core behavior

§  Affects 2D applications and 3D
applications

CPU

L1D L1I

LPDDR3

Android

Workload

CPU

L1D

L2

L1I

Display
Controller

SW Renderer

5

What about simulating the GPU?

§  Pros:
§  Golden reference – everything looks like a

real system!
§  Captures memory system interactions
§  Graphics output

§  Cons:
§  GPU models add a lot of simulation overhead
§  Realistic models not available to the research

community

§  Solution: Don’t simulate the GPU!

CPU

L1D L1I

LPDDR3

GPU

Android

Workload

CPU

L1D

L2

L1I

Display
Controller

GPU drivers

6

Introducing NoMali

§  Looks like a GPU
§  Provides the same register interface
§  Simulates interrupts

§  Runs the full driver stack
§  Pretends to run rendering jobs

§  Doesn’t render anything
§  Signals job completion immediately

§  Available to the community

§  … but doesn’t produce any display output

CPU

L1D L1I

LPDDR3

NoMali

Android

Workload

CPU

L1D

L2

L1I

Display
Controller

GPU drivers

7

Mali GPU overview

CPU

Shared
Memory

Midgard
Hardware

Application

Driver

Job
Descriptors

Input Data Output Data

Display
Processor

Shader Cores

Intermediate
Data

Job Manager

Registers &
Interrupts

Memory

See AnandTech for a good architecture overview

8

Mali GPU overview: The Job Manager

§  Abstracts the underlying µ-architecture
§  Controls most aspects of the GPU:

§  Job scheduling
§  Interupts
§  Address translation
§  Caches
§  …

§  Job submission through a register interface
§  Job parameters in main memory: Job

Descriptor

§  Interrupt on job completion

Application

Driver

Job
Descriptors

Input Data

Job Manager

9

NoMali overview

CPU

Shared
Memory

Midgard
Hardware

Application

Driver

Job
Descriptors

Input Data Output Data

Display
Processor

Shader Cores

Intermediate
Data

Job Manager

Registers &
Interrupts

Memory

No output data

No rendering

NoMali
Job Manager

Blank screen

10

Comparing simulation strategies

0%

10%

20%

30%

40%

50%

Relative Error

Software Rendering NoMali

§  Three experiments:
§  Software rendering, NoMali, GPU reference

§  Experimental setup:
§  Android 4.4 (KitKat)
§  BBench
§  Identical disk images in all experiments

§  Software rendering results in useless CPU
performance

§  NoMali is within 2% for CPU performance
§  … and 35% faster!

73% 103% 135% 54%

11

Model limitation: GPU bandwidth

0%

10%

20%

30%

40%

50%

Relative Error

Software Rendering NoMali

§  GPU memory system interactions not
simulated

§  Could potentially be faked using traffic
generators

§  Absolute difference for bbench ~75 MiB/s
§  Not likely to be a problem for CPU-centric

studies

§  Graphics workloads would experience a
larger impact from the GPU

§  NoMali was never intended for that use case.

73% 103% 135% 54%

12

gem5 Issue: inefficient uncacheable memory

§  Mali Midgard-series GPUs are IO coherent
§  GPU snoops into CPU caches
§  CPUs can’t snoop into the GPU’s caches

§  The driver disables caching for many
regions used by both the GPU and CPU

§  Wasn’t handled efficiently by gem5
§  Uncacheable accesses were always strictly

ordered
§  Resulted in CPIs ~50 (should’ve been ~2)
§  Fix committed in early May 2015

CPU

L1D L1I

LPDDR3

Mali GPU

Android

Workload

CPU

L1D

L2

L1I

GPU drivers

GPU Memory System

13

§  NoMali Model available on GitHub
§  https://github.com/ARM-software/nomali-model

§  gem5 integration on Review Board [RB2867, RB2869]

§  Requires drivers
§  Will make use of drivers available from MaliDeveloper
§  Requires a recent Android version (KitKat or LolliPop)

§  Android KitKat build instructions will be on the Wiki shortly

gem5 integration plan

14

Questions?

